enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    The first Dahlquist barrier states that a zero-stable and linear q-step multistep method cannot attain an order of convergence greater than q + 1 if q is odd and greater than q + 2 if q is even. If the method is also explicit, then it cannot attain an order greater than q (Hairer, Nørsett & Wanner 1993, Thm III.3.5).

  3. Zero stability - Wikipedia

    en.wikipedia.org/wiki/Zero_stability

    A linear multistep method is zero-stable if all roots of the characteristic equation that arises on applying the method to ′ = have magnitude less than or equal to unity, and that all roots with unit magnitude are simple. [2]

  4. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    Explicit multistep methods can never be A-stable, just like explicit Runge–Kutta methods. Implicit multistep methods can only be A-stable if their order is at most 2. The latter result is known as the second Dahlquist barrier; it restricts the usefulness of linear multistep methods for stiff equations. An example of a second-order A-stable ...

  5. Truncation error (numerical integration) - Wikipedia

    en.wikipedia.org/wiki/Truncation_error...

    For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors. Linear multistep methods that satisfy the condition of zero-stability have the same relation between local and global errors as one-step methods.

  6. General linear methods - Wikipedia

    en.wikipedia.org/wiki/General_linear_methods

    General linear methods (GLMs) are a large class of numerical methods used to obtain numerical solutions to ordinary differential equations. They include multistage Runge–Kutta methods that use intermediate collocation points , as well as linear multistep methods that save a finite time history of the solution.

  7. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  8. Continuous simulation - Wikipedia

    en.wikipedia.org/wiki/Continuous_simulation

    The Linear Multistep family. [9] When using numerical solvers the following properties of the solver must be considered: the stability of the method; the method property of stiffness; the discontinuity of the method; Concluding remarks contained in the method and available to the user; These points are crucial to the success of the usage of one ...

  9. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    Dahlquist (1963) proposed the investigation of stability of numerical schemes when applied to nonlinear systems that satisfy a monotonicity condition. The corresponding concepts were defined as G-stability for multistep methods (and the related one-leg methods) and B-stability (Butcher, 1975) for Runge–Kutta methods.