Search results
Results from the WOW.Com Content Network
Ethernet packet. The SFD (start frame delimiter) marks the end of the packet preamble. It is immediately followed by the Ethernet frame, which starts with the destination MAC address. [1] In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport
A frame is "the unit of transmission in a link layer protocol, and consists of a link layer header followed by a packet." [2] Each frame is separated from the next by an interframe gap. A frame is a series of bits generally composed of frame synchronization bits, the packet payload, and a frame check sequence. Examples are Ethernet frames ...
A data unit at layer 2, the data link layer, is a frame. In layer 4, the transport layer, the data units are segments and datagrams. Thus, in the example of TCP/IP communication over Ethernet, a TCP segment is carried in one or more IP packets, which are each carried in one or more Ethernet frames.
Protocol data units for the Internet protocol suite are: The transport layer PDU is the TCP segment for TCP, and the datagram for UDP; The Internet layer PDU is the packet. The link layer PDU is the frame. On TCP/IP over Ethernet, the data on the physical layer is carried in Ethernet frames.
Since the IP packet is carried by an Ethernet frame, the Ethernet frame has to be larger than the IP packet. With the normal untagged Ethernet frame overhead of 18 bytes and the 1500-byte payload, the Ethernet maximum frame size is 1518 bytes. If a 1500-byte IP packet is to be carried over a tagged Ethernet connection, the Ethernet frame ...
EtherType is a two-octet field in an Ethernet frame. It is used to indicate which protocol is encapsulated in the payload of the frame and is used at the receiving end by the data link layer to determine how the payload is processed. The same field is also used to indicate the size of some Ethernet frames.
Structure of an Ethernet packet, including the FCS that terminates the Ethernet frame [1] A frame check sequence (FCS) is an error-detecting code added to a frame in a communication protocol. Frames are used to send payload data from a source to a destination.
Individual frames are then "minor frames" within that superframe. Each frame contains a subframe ID (often a simple counter) which identifies its position within the superframe. A second frame synchronizer establishes superframe synchronization. This allows subcommutation, where some data is sent less frequently than every frame.