Search results
Results from the WOW.Com Content Network
For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Also called a level-order traversal. In a complete binary tree, a node's breadth-index (i − (2 d − 1)) can be used as traversal instructions from the root.
"A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...
The Cartesian tree for a sequence is a binary tree with one node for each number in the sequence. A symmetric (in-order) traversal of the tree results in the original sequence. Equivalently, for each node, the numbers in its left subtree are earlier than it in the sequence, and the numbers in the right subtree are later.
The tree rotation renders the inorder traversal of the binary tree invariant. This implies the order of the elements is not affected when a rotation is performed in any part of the tree. Here are the inorder traversals of the trees shown above: Left tree: ((A, P, B), Q, C) Right tree: (A, P, (B, Q, C))
Left rotations (and right) are order preserving in a binary search tree; it preserves the binary search tree property (an in-order traversal of the tree will yield the keys of the nodes in proper order). AVL trees and red–black trees are two examples of binary search trees that use the left rotation.
Euler tour of a tree, with edges labeled to show the order in which they are traversed by the tour. The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge