enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Potential gradient - Wikipedia

    en.wikipedia.org/wiki/Potential_gradient

    The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).

  3. Potentiometer (measuring instrument) - Wikipedia

    en.wikipedia.org/wiki/Potentiometer_(measuring...

    The principle of a potentiometer is that the potential dropped across a segment of a wire of uniform cross-section carrying a constant current is directly proportional to its length. The potentiometer is a simple device used to measure the electrical potentials (or compare the e.m.f of a cell).

  4. Potentiometric sensor - Wikipedia

    en.wikipedia.org/wiki/Potentiometric_sensor

    A potentiometric sensor is a type of chemical sensor that may be used to determine the analytical concentration of some components of the analyte gas or solution. These sensors measure the electrical potential of an electrode when no current is present.

  5. Potentiometer - Wikipedia

    en.wikipedia.org/wiki/Potentiometer

    Linear taper potentiometers [4] are used when the division ratio of the potentiometer must be proportional to the angle of shaft rotation (or slider position), for example, controls used for adjusting the centering of the display on an analog cathode-ray oscilloscope. Precision potentiometers have an accurate relationship between resistance and ...

  6. Velocity potential - Wikipedia

    en.wikipedia.org/wiki/Velocity_potential

    If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow.

  7. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  8. Gran plot - Wikipedia

    en.wikipedia.org/wiki/Gran_plot

    The Gran plot is based on the Nernst equation which can be written as = + ⁡ {+} where E is a measured electrode potential, E 0 is a standard electrode potential, s is the slope, ideally equal to RT/nF, and {H +} is the activity of the hydrogen ion.

  9. Scalar potential - Wikipedia

    en.wikipedia.org/wiki/Scalar_potential

    Scalar potential is not determined by the vector field alone: indeed, the gradient of a function is unaffected if a constant is added to it. If V is defined in terms of the line integral, the ambiguity of V reflects the freedom in the choice of the reference point r 0 .