enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    To derive the equation of the Mohr circle for the two-dimensional cases of plane stress and plane strain, first consider a two-dimensional infinitesimal material element around a material point (Figure 4), with a unit area in the direction parallel to the -plane, i.e., perpendicular to the page or screen.

  3. Plane stress - Wikipedia

    en.wikipedia.org/wiki/Plane_stress

    Figure 7.1 Plane stress state in a continuum. In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2 ...

  4. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    The first index i indicates that the stress acts on a plane normal to the X i-axis, and the second index j denotes the direction in which the stress acts (For example, σ 12 implies that the stress is acting on the plane that is normal to the 1 st axis i.e.;X 1 and acts along the 2 nd axis i.e.;X 2). A stress component is positive if it acts in ...

  5. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    Therefore, it is difficult to tell which of the two specimens is closer to the yield point or has even reached it. However, by means of the von Mises yield criterion, which depends solely on the value of the scalar von Mises stress, i.e., one degree of freedom, this comparison is straightforward: A larger von Mises value implies that the ...

  6. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    Schematic of the loading on a plane by force P at a point (0, 0) A starting point for solving contact problems is to understand the effect of a "point-load" applied to an isotropic, homogeneous, and linear elastic half-plane, shown in the figure to the right. The problem may be either plane stress or plane strain.

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Mohr's circle, Lame's stress ellipsoid (together with the stress director surface), and Cauchy's stress quadric are two-dimensional graphical representations of the state of stress at a point. They allow for the graphical determination of the magnitude of the stress tensor at a given point for all planes passing through that point.

  8. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    For two-dimensional, plane strain problems the strain-displacement relations are = ; = [+] ; = Repeated differentiation of these relations, in order to remove the displacements and , gives us the two-dimensional compatibility condition for strains

  9. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    A three-dimensional problem can then be reduced to a one-dimensional problem (for beams) or a two-dimensional problem (for plates and shells). Stress resultants are defined as integrals of stress over the thickness of a structural element. The integrals are weighted by integer powers the thickness coordinate z (or x 3).