Search results
Results from the WOW.Com Content Network
Tertiary alcohols and ketones are unaffected. Because the oxidation is signaled by a color change from orange to brownish green (indicating chromium being reduced from oxidation state +6 to +3), chromic acid is commonly used as a lab reagent in high school or undergraduate college chemistry as a qualitative analytical test for the presence of ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The reaction stoichiometry implicates the Cr(IV) species "CrO 2 OH −", which comproportionates with the chromic acid to give a Cr(V) oxide, which also functions as an oxidant for the alcohol. [ 6 ] The oxidation of the aldehydes is proposed to proceed via the formation of hemiacetal -like intermediates, which arise from the addition of the O ...
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
Potassium dichromate, K 2 Cr 2 O 7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health.
A Knoevenagel condensation is a nucleophilic addition of an active hydrogen compound to a carbonyl group followed by a dehydration reaction in which a molecule of water is eliminated (hence condensation). The product is often an α,β-unsaturated ketone (a conjugated enone). General Knoevenagel layout
The bicycle is then opened by nucleophilic attack on the ketone to give the contracted product. [19] This reaction has been used to convert cyclohexanone to the methyl ester of cyclopentanecarboxylic acid. A generalized mechanism of the Favorskii rearrangement to give a ring contracted product. Note that anion formation has been omitted.
Substrates are broadly limited to methyl ketones and secondary alcohols oxidizable to methyl ketones, such as isopropanol.The only primary alcohol and aldehyde to undergo this reaction are ethanol and acetaldehyde, respectively. 1,3-Diketones such as acetylacetone also undergo this reaction. β-ketoacids such as acetoacetic acid will also give the test upon heating.