Search results
Results from the WOW.Com Content Network
These Gaussians are plotted in the accompanying figure. The product of two Gaussian functions is a Gaussian, and the convolution of two Gaussian functions is also a Gaussian, with variance being the sum of the original variances: c 2 = c 1 2 + c 2 2 {\displaystyle c^{2}=c_{1}^{2}+c_{2}^{2}} .
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
A key fact of Gaussian processes is that they can be completely defined by their second-order statistics. [5] Thus, if a Gaussian process is assumed to have mean zero, defining the covariance function completely defines the process' behaviour.
The generalized normal distribution (GND) or generalized Gaussian distribution (GGD) is either of two families of parametric continuous probability distributions on the real line.
Shape of the impulse response of a typical Gaussian filter. In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would have infinite impulse response).
The Kaniadakis Gaussian distribution (also known as κ-Gaussian distribution) is a probability distribution which arises as a generalization of the Gaussian distribution from the maximization of the Kaniadakis entropy under appropriated constraints.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
The standard Gaussian measure on . is a Borel measure (in fact, as remarked above, it is defined on the completion of the Borel sigma algebra, which is a finer structure);; is equivalent to Lebesgue measure: , where stands for absolute continuity of measures;