Search results
Results from the WOW.Com Content Network
Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore with a narrow diameter (2–50 nm) because molecules frequently collide with the pore wall. [ 1 ]
Under an idealized reaction condition for A + B → product in a diluted solution, Smoluchovski suggested that the molecular flux at the infinite time limit can be calculated from Fick's laws of diffusion yielding a fixed/stable concentration gradient from the target molecule, e.g. B is the target molecule holding fixed relatively, and A is the ...
The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.
The latter is always stable due to a theorem of Edward Teller which states that atoms can never bind in Thomas–Fermi model. [ 14 ] [ 15 ] [ 16 ] The Lieb–Thirring inequality was used to bound the quantum kinetic energy of the electrons in terms of the Thomas–Fermi kinetic energy ∫ R 3 ρ ( x ) 5 3 d 3 x {\displaystyle \int _{\mathbb {R ...
In regular cold matter, quarks, fundamental particles of nuclear matter, are confined by the strong force into hadrons that consist of 2–4 quarks, such as protons and neutrons. Quark matter or quantum chromodynamical (QCD) matter is a group of phases where the strong force is overcome and quarks are deconfined and free to move.
In chemical physics, atomic diffusion is a diffusion process whereby the random, thermally-activated movement of atoms in a solid results in the net transport of atoms. For example, helium atoms inside a balloon can diffuse through the wall of the balloon and escape, resulting in the balloon slowly deflating.
The continent of stability is a hypothesised large group of nuclides with masses greater than 300 daltons that is stable against radioactive decay, consisting of freely flowing up quarks and down quarks rather than up and down quarks bound into protons and neutrons. Matter containing these nuclides is termed up-down quark matter (udQM). [1]
In interstitial lattice diffusion, a diffusant (such as carbon in an iron alloy), will diffuse in between the lattice structure of another crystalline element. In substitutional lattice diffusion (self-diffusion for example), the atom can only move by switching places with another atom.