Search results
Results from the WOW.Com Content Network
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.
satisfying respectively y(0) = 0, y ′ (0) = 1 and y(0) = 1, y ′ (0) = 0. It follows from the theory of ordinary differential equations that the first solution, sine, has the second, cosine, as its derivative, and it follows from this that the derivative of cosine is the negative of the sine. The identity is equivalent to the assertion that ...
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.
The y-axis ordinates of A, B and D are sin θ, tan θ and csc θ, respectively, while the x-axis abscissas of A, C and E are cos θ, cot θ and sec θ, respectively. Signs of trigonometric functions in each quadrant. Mnemonics like "all students take calculus" indicates when sine, cosine, and tangent are positive from quadrants I to IV. [8]
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.
In the mathematical area of graph theory, a contact graph or tangency graph is a graph whose vertices are represented by geometric objects (e.g. curves, line segments, or polygons), and whose edges correspond to two objects touching (but not crossing) according to some specified notion. [1]
An ordered pair of vertices, such as an edge in a directed graph. An arrow (x, y) has a tail x, a head y, and a direction from x to y; y is said to be the direct successor to x and x the direct predecessor to y. The arrow (y, x) is the inverted arrow of the arrow (x, y). articulation point A vertex in a connected graph whose removal would ...
For k = 3, every k-critical graph (that is, every odd cycle) can be generated as a k-constructible graph such that all of the graphs formed in its construction are also k-critical. For k = 8 , this is not true: a graph found by Catlin (1979) as a counterexample to Hajós's conjecture that k -chromatic graphs contain a subdivision of K k , also ...