Search results
Results from the WOW.Com Content Network
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level.
Since the number of BFS-s is finite and bounded by (), an optimal solution to any LP can be found in finite time by just evaluating the objective function in all () BFS-s. This is not the most efficient way to solve an LP; the simplex algorithm examines the BFS-s in a much more efficient way.
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
Parallel all-pairs shortest path algorithm; Parallel breadth-first search; Parallel single-source shortest path algorithm; Path-based strong component algorithm; Pre-topological order; Prim's algorithm; Proof-number search; Push–relabel maximum flow algorithm
Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. [2] However, it only stores a predetermined number, , of best states at each level (called the beam width). Only those states are expanded ...
The algorithm is different from a breadth-first search, but it produces an ordering that is consistent with breadth-first search. The lexicographic breadth-first search algorithm is based on the idea of partition refinement and was first developed by Donald J. Rose, Robert E. Tarjan, and George S. Lueker .