Search results
Results from the WOW.Com Content Network
Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, 1 1 − z 2 {\textstyle {\tfrac {1}{\sqrt {1-z^{2}}}}} , as a binomial series , and integrating term by term (using the integral definition as ...
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
Graphs of the inverse hyperbolic functions The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure.
Graphs of historical trigonometric functions compared with sin and cos – in the SVG file, hover over or click a graph to highlight it. The ordinary sine function (see note on etymology) was sometimes historically called the sinus rectus ("straight sine"), to contrast it with the versed sine (sinus versus). [37]
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.
cos x−1 = cos(x)−1 = −(1−cos(x)) = −ver(x) or negative versine of x, the additive inverse (or negation) of an old trigonometric function; cos −1 y = cos −1 (y), sometimes interpreted as arccos(y) or arccosine of y, the compositional inverse of the trigonometric function cosine (see below for ambiguity)
The opposite leg, O, is approximately equal to the length of the blue arc, s. Gathering facts from geometry, s = Aθ , from trigonometry, sin θ = O / H and tan θ = O / A , and from the picture, O ≈ s and H ≈ A leads to: sin θ = O H ≈ O A = tan θ = O A ≈ s A = A θ A = θ . {\displaystyle \sin \theta ={\frac ...
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh( x / a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.