Search results
Results from the WOW.Com Content Network
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.
The number of nucleons (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number. For example, carbon-12 , carbon-13 , and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13, and 14, respectively.
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.
Copper (29 Cu) has two stable isotopes, 63 Cu and 65 Cu, along with 28 radioisotopes. The most stable radioisotope is 67 Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β + decay, while isotopes with atomic masses above 65 tend to ...
The only stable nuclides having an odd number of protons and an odd number of neutrons are hydrogen-2, lithium-6, boron-10, nitrogen-14 and (observationally) tantalum-180m. This is because the mass–energy of such atoms is usually higher than that of their neighbors on the same isobaric chain, so most of them are unstable to beta decay .
The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV , formally: m n − m nuclide / A , where A = Z + N is the mass number.
The monoisotopic mass is the sum of the masses of the atoms in a molecule using the unbound, ground-state, rest mass of the principal (most abundant) isotope for each element. [12] [5] The monoisotopic mass of a molecule or ion is the exact mass obtained using the principal isotopes. Monoisotopic mass is typically expressed in daltons.
The element also has 31 nuclear isomers, with masses of 141–154, 156, 158, 162, and 164–168 (not every mass number corresponds to only one isomer). [42] The most stable of them are terbium-156m, with a half-life of 24.4 hours, and terbium-156m2, with a half-life of 22.7 hours; this is longer than half-lives of most ground states of ...