enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    Logistic function for the mathematical model used in Population dynamics that adjusts growth rate based on how close it is to the maximum a system can support; Albert Allen Bartlett – a leading proponent of the Malthusian Growth Model; Exogenous growth model – related growth model from economics; Growth theory – related ideas from economics

  3. Population ecology - Wikipedia

    en.wikipedia.org/wiki/Population_ecology

    When describing growth models, there are two main types of models that are most commonly used: exponential and logistic growth. When the per capita rate of increase takes the same positive value regardless of population size, the graph shows exponential growth.

  4. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...

  5. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    Based on the above considerations, Wheldon [15] proposed a mathematical model of tumor growth, called the Gomp-Ex model, that slightly modifies the Gompertz law. In the Gomp-Ex model it is assumed that initially there is no competition for resources, so that the cellular population expands following the exponential law.

  6. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...

  7. Hyperbolic growth - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_growth

    Growth equations. Like exponential growth and logistic growth, hyperbolic growth is highly nonlinear, but differs in important respects.These functions can be confused, as exponential growth, hyperbolic growth, and the first half of logistic growth are convex functions; however their asymptotic behavior (behavior as input gets large) differs dramatically:

  8. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Although growth may initially be exponential, the modelled phenomena will eventually enter a region in which previously ignored negative feedback factors become significant (leading to a logistic growth model) or other underlying assumptions of the exponential growth model, such as continuity or instantaneous feedback, break down.

  9. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off. [6] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms. [8]