Search results
Results from the WOW.Com Content Network
In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets.They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part.
The definition of the RV-coefficient makes use of ideas [5] concerning the definition of scalar-valued quantities which are called the "variance" and "covariance" of vector-valued random variables. Note that standard usage is to have matrices for the variances and covariances of vector random variables.
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. [citation needed]
The information given by a correlation coefficient is not enough to define the dependence structure between random variables. The correlation coefficient completely defines the dependence structure only in very particular cases, for example when the distribution is a multivariate normal distribution. (See diagram above.)
Coefficient matrices are used in algorithms such as Gaussian elimination and Cramer's rule to find solutions to the system. The leading entry (sometimes leading coefficient [citation needed]) of a row in a matrix is the first nonzero entry in that row.
Of course, all matter is inhomogeneous at some scale, but frequently it is convenient to treat it as homogeneous. A good example is the continuum concept which is used in continuum mechanics . Under this assumption, materials such as fluids , solids , etc. can be treated as homogeneous materials and associated with these materials are material ...
The equation is called homogeneous if = and () is a homogeneous function. The definition f ( x ) = C {\displaystyle f(x)=C} is very general in that x {\displaystyle x} can be any sensible mathematical object (number, vector, function, etc.), and the function f ( x ) {\displaystyle f(x)} can literally be any mapping , including integration or ...
The coefficient of variation is useful because the standard deviation of data must always be understood in the context of the mean of the data. In contrast, the actual value of the CV is independent of the unit in which the measurement has been taken, so it is a dimensionless number .