Search results
Results from the WOW.Com Content Network
Most of the isotopes with atomic mass numbers below 14 decay to isotopes of carbon, while most of the isotopes with masses above 15 decay to isotopes of oxygen. The shortest-lived known isotope is nitrogen-10, with a half-life of 143(36) yoctoseconds, though the half-life of nitrogen-9 has not been measured exactly.
Different isotopes of a given element are distinguished by their mass number, which is written as a superscript on the left hand side of the chemical symbol (e.g., 238 U). The mass number is always an integer and has units of "nucleons". Thus, magnesium-24 (24 is the mass number) is an atom with 24 nucleons (12 protons and 12 neutrons).
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Chemical symbols are the abbreviations used in chemistry, mainly for chemical elements; but also for functional groups, chemical compounds, and other entities. Element symbols for chemical elements, also known as atomic symbols, normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised.
This notation is used to specify electron configurations and to create the term symbol for the electron states in a multi-electron atom. When writing a term symbol, the above scheme for a single electron's orbital quantum number is applied to the total orbital angular momentum associated to an electron state. [4]
No odd-neutron-number isotope is the most naturally abundant isotope in its element, except for beryllium-9 (which is the only stable beryllium isotope), nitrogen-14, and platinum-195. No stable nuclides have a neutron number of 19, 21, 35, 39, 45, 61, 89, 115, 123, or ≥ 127.
Some isotopes have had historical or confusing names and symbols, these are to be avoided (except when quoting historical usage): e.g. thoron (Tn) (220 Rn), actinon (An) (219 Rn), ionium (Io) (230 Th), radiocarbon (14 C). It is permissible to use the atomic number rather than the symbol in contexts about history when anachronism is to be ...
A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.