enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    For example, + is the function which takes a real number as input and outputs that number plus 1. Again, a domain and codomain of R {\displaystyle \mathbb {R} } is implied. The domain and codomain can also be explicitly stated, for example:

  3. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Sigma function: Sums of powers of divisors of a given natural number. Euler's totient function: Number of numbers coprime to (and not bigger than) a given one. Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive ...

  4. Arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_function

    In number theory, an arithmetic, arithmetical, or number-theoretic function [1] [2] is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. [3] [4] [5] Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of ...

  5. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.

  6. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]

  7. Condition number - Wikipedia

    en.wikipedia.org/wiki/Condition_number

    Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.

  8. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).

  9. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    A perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number.