Search results
Results from the WOW.Com Content Network
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.
Contact resistance values are typically small (in the microohm to milliohm range). Contact resistance can cause significant voltage drops and heating in circuits with high current. Because contact resistance adds to the intrinsic resistance of the conductors, it can cause significant measurement errors when exact resistance values are needed.
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
One of the functions of many types of multimeters is the measurement of resistance in ohms.. The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt (V), applied to these points, produces in the conductor a current of one ampere (A), the conductor not being the seat of any electromotive force.
The values of the resistors are selected such that R 1 gives the highest load resistance, R 1 ||R 2 gives the nominal load resistance and either R 1 ||R 2 ||R 3 or R 2 ||R 3 gives the lowest load resistance. A voltmeter is then connected in parallel to the resistors and the measured values of voltage for each load state can be used to calculate ...
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.
An I–V curve, showing the difference between static resistance (inverse slope of line B) and differential resistance (inverse slope of line C) at a point (A).. The resistance between two terminals of an electrical device or circuit is determined by its current–voltage (I–V) curve (characteristic curve), giving the current through it for any given voltage across it. [18]