Search results
Results from the WOW.Com Content Network
The acid-growth hypothesis is a theory that explains the expansion dynamics of cells and organs in plants. It was originally proposed by Achim Hager and Robert Cleland in 1971. [1] [2] They hypothesized that the naturally occurring plant hormone, auxin (indole-3-acetic acid, IAA), induces H + proton extrusion into the apoplast.
In nylon, hydrogen bonds between carbonyl and the amide NH effectively link adjacent chains, which gives the material mechanical strength. Hydrogen bonds also affect the aramid fibre, where hydrogen bonds stabilize the linear chains laterally. The chain axes are aligned along the fibre axis, making the fibres extremely stiff and strong.
A weaker bond is formed if a hydrogen atom in one molecule is attracted to an atom of nitrogen, oxygen, or fluorine in another molecule, a phenomenon called hydrogen bonding. Chemical adhesion occurs when the surface atoms of two separate surfaces form ionic, covalent, or hydrogen bonds. The engineering principle behind chemical adhesion in ...
Bonding energies are significant, with solution-phase values falling within the same order of magnitude as hydrogen bonds and salt bridges. Similar to these other non-covalent bonds, cation–π interactions play an important role in nature, particularly in protein structure, molecular recognition and enzyme catalysis. The effect has also been ...
The addition of hydrogen to double or triple bonds in hydrocarbons is a type of redox reaction that can be thermodynamically favorable. For example, the addition of hydrogen to ethene has a Gibbs free energy change of -101 kJ·mol −1 , which is highly exothermic . [ 11 ]
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that ...
Chemical structures for Watson–Crick and Hoogsteen A•T and G•C+ base pairs. The Hoogsteen geometry can be achieved by purine rotation around the glycosidic bond (χ) and base-flipping (θ), affecting simultaneously C8 and C1 ′ (yellow). [1] A Hoogsteen base pair is a variation of base-pairing in nucleic acids such as the A•T pair.
Hydrogen bonding occurs between molecules with a hydrogen atom attached to a small, electronegative atom such as fluorine, oxygen or nitrogen. This bond is naturally polar, with the hydrogen atom gaining a slight positive charge and the other atom becoming slightly negative.