Search results
Results from the WOW.Com Content Network
Making a shallow copy of a const or immutable value removes the outer layer of immutability: Copying an immutable string (immutable(char[])) returns a string (immutable(char)[]). The immutable pointer and length are being copied and the copies are mutable. The referred data has not been copied and keeps its qualifier, in the example immutable.
The immutable keyword denotes data that cannot be modified through any reference. The const keyword denotes a non-mutable view of mutable data. Unlike C++ const, D const and immutable are "deep" or transitive, and anything reachable through a const or immutable object is const or immutable respectively. Example of const vs. immutable in D
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
In a number of object-oriented languages, there is the concept of an immutable object, which is particularly used for basic types like strings; notable examples include Java, JavaScript, Python, and C#. These languages vary in whether user-defined types can be marked as immutable, and may allow particular fields (attributes) of an object or ...
In computer science, string interning is a method of storing only one copy of each distinct string value, which must be immutable. [1] Interning strings makes some string processing tasks more time-efficient or space-efficient at the cost of requiring more time when the string is created or interned.
In computer science, having value semantics (also value-type semantics or copy-by-value semantics) means for an object that only its value counts, not its identity. [1] [2] Immutable objects have value semantics trivially, [3] and in the presence of mutation, an object with value semantics can only be uniquely-referenced at any point in a program.
In C#, a class is a reference type while a struct (concept derived from the struct in C language) is a value type. [5] Hence an instance derived from a class definition is an object while an instance derived from a struct definition is said to be a value object (to be precise a struct can be made immutable to represent a value object declaring attributes as readonly [6]).