enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    Every rational function can be naturally extended to a function whose domain and range are the whole Riemann sphere (complex projective line). A complex rational function with degree one is a Möbius transformation. Rational functions are representative examples of meromorphic functions. [3]

  3. Discrete valuation ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_valuation_ring

    For an example more geometrical in nature, take the ring R = {f/g : f, g polynomials in R[X] and g(0) ≠ 0}, considered as a subring of the field of rational functions R(X) in the variable X. R can be identified with the ring of all real-valued rational functions defined (i.e. finite) in a neighborhood of 0 on the real axis (with the ...

  4. Noetherian ring - Wikipedia

    en.wikipedia.org/wiki/Noetherian_ring

    However, a non-Noetherian ring can be a subring of a Noetherian ring. Since any integral domain is a subring of a field, any integral domain that is not Noetherian provides an example. To give a less trivial example, The ring of rational functions generated by x and y /x n over a field k is a subring of the field k(x,y) in only two variables.

  5. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).

  6. Function field of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Function_field_of_an...

    In algebraic geometry, the function field of an algebraic variety V consists of objects that are interpreted as rational functions on V.In classical algebraic geometry they are ratios of polynomials; in complex geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions.

  7. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.

  8. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  9. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Dirichlet function: is an indicator function that matches 1 to rational numbers and 0 to irrationals. It is nowhere continuous. Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function.