Search results
Results from the WOW.Com Content Network
[5] [6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h). [7] [8]: 237 [9] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. [9]
This formula is known as the symmetric difference quotient. In this case the first-order errors cancel, so the slope of these secant lines differ from the slope of the tangent line by an amount that is approximately proportional to h 2 {\displaystyle h^{2}} .
Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i ...
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.
In principle, the derivative of a function can be computed from the definition by considering the difference quotient and computing its limit. Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones.
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).