Search results
Results from the WOW.Com Content Network
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Range sum queries may be answered in constant time and linear space by pre-computing an array p of same length as the input such that for every index i, the element p i is the sum of the first i elements of a. Any query may then be computed as follows: (,) =.
To illustrate, suppose a is the memory address of the first element of an array, and i is the index of the desired element. To compute the address of the desired element, if the index numbers count from 1, the desired address is computed by this expression: + (), where s is the size of each element. In contrast, if the index numbers count from ...
General array slicing can be implemented (whether or not built into the language) by referencing every array through a dope vector or descriptor – a record that contains the address of the first array element, and then the range of each index and the corresponding coefficient in the indexing formula.
Using the two-value form gets the index/key (first element) and the value (second element): for index , value := range someCollection { // Do something to index and value } Using the one-value form gets the index/key (first element):
Thus an element in row i and column j of an array A would be accessed by double indexing (A[i][j] in typical notation). This way of emulating multi-dimensional arrays allows the creation of jagged arrays, where each row may have a different size – or, in general, where the valid range of each index depends on the values of all preceding indices.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The first element of the array is indexed by subscript of 1. n (n-based indexing) The base index of an array can be freely chosen. Usually programming languages allowing n-based indexing also allow negative index values and other scalar data types like enumerations, or characters may be used as an array index.