Search results
Results from the WOW.Com Content Network
x erf x 1 − erf x; 0: 0: 1: 0.02: 0.022 564 575: 0.977 435 425: 0.04: 0.045 111 106: 0.954 888 894: 0.06: 0.067 621 594: 0.932 378 406: 0.08: 0.090 078 126: 0.909 ...
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
The Q-function is well tabulated and can be computed directly in most of the mathematical software packages such as R and those available in Python, MATLAB and Mathematica. Some values of the Q-function are given below for reference.
For example, if the mean height in a population of 21-year-old men is 1.75 meters, and one randomly chosen man is 1.80 meters tall, then the "error" is 0.05 meters; if the randomly chosen man is 1.70 meters tall, then the "error" is −0.05 meters. The expected value, being the mean of the entire population, is typically unobservable, and hence ...
The function was tabulated by Vera Faddeeva and N. N. Terentyev in 1954. [8] It appears as nameless function w(z) in Abramowitz and Stegun (1964), formula 7.1.3. The name Faddeeva function was apparently introduced by G. P. M. Poppe and C. M. J. Wijers in 1990; [9] [better source needed] previously, it was known as Kramp's function (probably after Christian Kramp).
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.