enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Applying the above process (suppose that n = 2 in this case) reveals that = = = [] The matrix representation of vectors and operators depends on the chosen basis; a similar matrix will result from an alternate basis. Nevertheless, the method to find the components remains the same.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The sum of the entries along the main diagonal (the trace), plus one, equals 4 − 4(x 2 + y 2 + z 2), which is 4w 2. Thus we can write the trace itself as 2w 2 + 2w 2 − 1; and from the previous version of the matrix we see that the diagonal entries themselves have the same form: 2x 2 + 2w 2 − 1, 2y 2 + 2w 2 − 1, and 2z 2 + 2w 2 − 1. So ...

  4. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    A bivector is an oriented plane element, in much the same way that a vector is an oriented line element. Given two vectors a and b, one can view the bivector a ∧ b as the oriented parallelogram spanned by a and b. The cross product is then obtained by taking the Hodge star of the bivector a ∧ b, mapping 2-vectors to vectors:

  5. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  6. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  7. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    It follows that the matrix of B on any basis is symmetric. This implies that the property of being a symmetric matrix must be kept by the above change-of-base formula. One can also check this by noting that the transpose of a matrix product is the product of the transposes computed in the reverse order. In particular,

  8. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    By referring collectively to e 1, e 2, e 3 as the e basis and to n 1, n 2, n 3 as the n basis, the matrix containing all the c jk is known as the "transformation matrix from e to n", or the "rotation matrix from e to n" (because it can be imagined as the "rotation" of a vector from one basis to another), or the "direction cosine matrix from e ...

  9. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.