Search results
Results from the WOW.Com Content Network
Furthermore, two different homozygous plants created in that way can be used to produce a generation of F1 hybrid plants which have the advantages of heterozygosity and a greater range of possible traits. Thus, an individual heterozygous plant chosen for its desirable characteristics can be converted into a heterozygous variety (F1 hybrid ...
In the example pictured to the right, RRYY/rryy parents result in F 1 offspring that are heterozygous for both R and Y (RrYy). [4] This is a dihybrid cross of two heterozygous parents. The traits observed in this cross are the same traits that Mendel was observing for his experiments. This cross results in the expected phenotypic ratio of 9:3:3:1.
Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).
The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...
If the alleles are different, the genotype is referred to as heterozygous. Genotype contributes to phenotype, the observable traits and characteristics in an individual or organism. [3] The degree to which genotype affects phenotype depends on the trait. For example, the petal color in a pea plant is exclusively
The following example illustrates a dihybrid cross between two double-heterozygote pea plants. R represents the dominant allele for shape (round), while r represents the recessive allele (wrinkled). A represents the dominant allele for color (yellow), while a represents the recessive allele (green).
From this perspective, crossbred plants and animals exhibiting heterosis may have "superior" traits, but this does not necessarily equate to any evidence of outright "genetic superiority". Use of the term "superiority" is commonplace for example in crop breeding, where it is well understood to mean a better-yielding, more robust plant for ...
In plants, hybridization mostly generates speciation events, [5] and commonly produces polyploid species. Factors like polyploidy events also plays significant factors for understanding the hybridization events (Example: an F1 hybrid of Jatropha curcas x Ricinus communis ), [ 6 ] because these polyploids tend to have an advantage for the early ...