Search results
Results from the WOW.Com Content Network
Bats use echolocation to find prey in dim environments, but they are certainly not blind. #4. ... Evidence suggests the spiders can even distinguish partner frogs from others via chemical signals ...
Echolocating bats use echolocation to navigate and forage, often in total darkness. They generally emerge from their roosts in caves, attics, or trees at dusk and hunt for insects into the night. Using echolocation, bats can determine how far away an object is, the object's size, shape and density, and the direction (if any) that an object is ...
Bolas: Bolas spiders are unusual orb-weaver spiders that do not spin the webs. Instead, they hunt by using a sticky 'capture blob' of silk on the end of a line, known as a ' bolas '. By swinging the bolas at flying male moths or moth flies nearby, the spider may snag its prey rather like a fisherman snagging a fish on a hook.
The grate-type tapetum is the most efficient; the long vitreous body and spherical lens combine to produce a sharp, in focus image. It forms rows of crystals which lie beneath the visual cells, and the nerves exit through the gaps in the 'grate'. This type is found primarily in hunting spiders such as wolf spiders and fishing spiders. [2] [7]
Animal echolocation, animals emitting sound and listening to the echo in order to locate objects or navigate; Echo sounding, listening to the echo of sound pulses to measure the distance to the bottom of the sea, a special case of sonar; Gunfire locator; Human echolocation, the use of echolocation by blind people; Human bycatch
Spiders that spin webs typically have three claws, the middle one being small; hunting spiders typically have only two claws. Since they do not have antennae, spiders use specialised and sensitive setae on their legs to pick up scent, sounds, vibrations and air currents. [6] Some spiders, such as the Australian crab spider, do not have claws.
Echolocation involves emitting sounds and interpreting the vibrations that return from objects. [71] In bats, echolocation also serves the purpose of mapping their environment. They are capable of recognizing a space they have been in before without any visible light because they can memorize patterns in the feedback they get from echolocation ...
Information from other senses such as echolocation and magnetoreception may also be integrated in certain animals. The hippocampus is the part of the brain that integrates linear and angular motion to encode a mammal's relative position in space.