Search results
Results from the WOW.Com Content Network
In object-oriented programming, "immutable interface" is a pattern for designing an immutable object. [1] The immutable interface pattern involves defining a type which does not provide any methods which mutate state. Objects which are referenced by that type are not seen to have any mutable state, and appear immutable.
Similar patterns are the Immutable Interface and Immutable Wrapper. In pure functional programming languages it is not possible to create mutable objects without extending the language (e.g. via a mutable references library or a foreign function interface ), so all objects are immutable.
In C#, a class is a reference type while a struct (concept derived from the struct in C language) is a value type. [5] Hence an instance derived from a class definition is an object while an instance derived from a struct definition is said to be a value object (to be precise a struct can be made immutable to represent a value object declaring attributes as readonly [6]).
Similarly, the idea of immutable data from functional programming is often included in imperative programming languages, [108] for example the tuple in Python, which is an immutable array, and Object.freeze() in JavaScript. [109]
It's possible to create immutable fluent interfaces that utilise copy-on-write semantics. In this variation of the pattern, instead of modifying internal properties and returning a reference to the same object, the object is instead cloned, with properties changed on the cloned object, and that object returned.
There are multiple ways to implement the flyweight pattern. One example is mutability: whether the objects storing extrinsic flyweight state can change. Immutable objects are easily shared, but require creating new extrinsic objects whenever a change in state occurs. In contrast, mutable objects can share state.
In computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure.
The data type should preferably be immutable if possible. It is common for implementations to handle equality testing, serialization and model binding. The strongly typed identifier commonly wraps the data type used as the primary key in the database, such as a string, an integer or universally unique identifier (UUID).