enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Restricted Boltzmann machines can also be used in deep learning networks. In particular, deep belief networks can be formed by "stacking" RBMs and optionally fine-tuning the resulting deep network with gradient descent and backpropagation .

  3. Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_machine

    A Boltzmann machine, like a Sherrington–Kirkpatrick model, is a network of units with a total "energy" (Hamiltonian) defined for the overall network. Its units produce binary results. Boltzmann machine weights are stochastic. The global energy in a Boltzmann machine is identical in form to that of Hopfield networks and Ising models:

  4. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    [2] [3] It is a framework with wide support for deep learning algorithms. [4] Deeplearning4j includes implementations of the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked denoising autoencoder and recursive neural tensor network, word2vec, doc2vec, and GloVe.

  5. Deep belief network - Wikipedia

    en.wikipedia.org/wiki/Deep_belief_network

    In machine learning, a deep belief network (DBN) is a generative graphical model, ... A restricted Boltzmann machine (RBM) with fully connected visible and hidden ...

  6. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    The Boltzmann machine can be thought of as a noisy Hopfield network. It is one of the first neural networks to demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, but the contrastive divergence algorithm speeds up training for Boltzmann machines and Products of Experts.

  7. Convolutional deep belief network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_deep_belief...

    Alternatively, it is a hierarchical generative model for deep learning, which is highly effective in image processing and object recognition, though it has been used in other domains too. [2] The salient features of the model include the fact that it scales well to high-dimensional images and is translation-invariant. [3]

  8. Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_distribution

    In deep learning, the Boltzmann machine is considered to be one of the unsupervised learning models. In the design of Boltzmann machine in deep learning, as the number of nodes are increased the difficulty of implementing in real time applications becomes critical, so a different type of architecture named Restricted Boltzmann machine is ...

  9. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.