Search results
Results from the WOW.Com Content Network
Diagram of a zonula occludens or tight junction, a structure that joins the epithelium of two cells. Actin is one of the anchoring elements shown in green. Cellular adhesion and development. The adhesion between cells is a characteristic of multicellular organisms that enables tissue specialization and therefore increases cell complexity.
Cross-bridge theory states that actin and myosin form a protein complex (classically called actomyosin) by attachment of myosin head on the actin filament, thereby forming a sort of cross-bridge between the two filaments. The sliding filament theory is a widely accepted explanation of the mechanism that underlies muscle contraction.
Diagram demonstrating alpha-actinin interactions in focal adhesions and striated muscle. (A) Depiction of the cytoskeleton in focal contacts, illustrating a-actinin (in red) connecting actin filaments (in blue) to membrane-associated structures, such as vinculin (in dark green), talin (in light green), integrin (in brown), and tensin (in purple).
The cell cortex, also known as the actin cortex, cortical cytoskeleton or actomyosin cortex, is a specialized layer of cytoplasmic proteins on the inner face of the cell membrane. It functions as a modulator of membrane behavior and cell surface properties.
The protein complex composed of actin and myosin, contractile proteins, is sometimes referred to as actomyosin.In striated skeletal and cardiac muscle, the actin and myosin filaments each have a specific and constant length in the order of a few micrometers, far less than the length of the elongated muscle cell (up to several centimeters in some skeletal muscle cells). [5]
Because actin monomers must be recycled to sustain high rates of actin-based motility during chemotaxis, cell signalling is believed to activate cofilin, the actin-filament depolymerizing protein which binds to ADP-rich actin subunits nearest the filament's pointed-end and promotes filament fragmentation, with concomitant depolymerization in ...
A diagram of the structure of a myofibril (consisting of many myofilaments in parallel, and sarcomeres in series) Sliding filament model of muscle contraction. The myosin heads form cross bridges with the actin myofilaments; this is where they carry out a 'rowing' action along the actin. When the muscle fibre is relaxed (before contraction ...
This stimulates actin branching and increases cell motility. [2] Rac1 induces cortactin to localize to the cell membrane, where it simultaneously binds F-actin and Arp2/3. The result is a structural reorganization of the lamellipodium and ensuing cell motility. [5] Rac promotes lamellipodia while cdc42 promotes filopodia. [6]