enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s 2 or m·s −2) or equivalently in newtons per kilogram (N/kg or N·kg −1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s 2 (32 ft/s 2).

  3. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.

  4. Kilogram-force - Wikipedia

    en.wikipedia.org/wiki/Kilogram-force

    'weight'), is a non-standard gravitational metric unit of force. It is not accepted for use with the International System of Units (SI) [ 1 ] and is deprecated for most uses. [ citation needed ] The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.806 65 m/s 2 gravitational field ( standard gravity ...

  5. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth.The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2]

  6. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Assuming SI units, F is measured in newtons (N), m 1 and m 2 in kilograms (kg), r in meters (m), and the constant G is 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. [12] The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798 ...

  7. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  8. Physical geodesy - Wikipedia

    en.wikipedia.org/wiki/Physical_geodesy

    In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s 2 or m·s −2) or equivalently in newtons per kilogram (N/kg or N·kg −1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures , is 9.8 m/s 2 (32 ft/s 2 ).

  9. Weight - Wikipedia

    en.wikipedia.org/wiki/Weight

    The SI unit of weight is the same as that of force: the newton (N) – a derived unit which can also be expressed in SI base units as kg⋅m/s 2 (kilograms times metres per second squared). [ 21 ] In commercial and everyday use, the term "weight" is usually used to mean mass, and the verb "to weigh" means "to determine the mass of" or "to have ...