Search results
Results from the WOW.Com Content Network
In solid-state NMR spectroscopy, magic-angle spinning (MAS) is a technique routinely used to produce better resolution NMR spectra. MAS NMR consists in spinning the sample (usually at a frequency of 1 to 130 kHz ) at the magic angle θ m (ca. 54.74°, where cos 2 θ m =1/3) with respect to the direction of the magnetic field .
The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), [11] is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric. [12]
In NMR spectroscopy, receptivity refers to the relative detectability of a particular element.Some elements are easily detected, some less so. The receptivity is a function of the abundance of the element's NMR-responsive isotope and that isotope's gyromagnetic ratio (or equivalently, the nuclear magnetic moment).
Bruker Introduces New Benchtop FT-NMR System FOURIER™ 60. Compact FT-NMR with Permanent Magnet Offers High-Resolution Spectra, Outstanding Ease of Use and Industry-leading TopSpin TM Software.
Bruker Announces AVANCE™-IVDr as a Standardized NMR Platform for Clinical Screening and In Vitro Diagnostics (IVD) Discovery and Validation New AVANCE-IVDr System Offers High Performance and ...
Free induction decay (FID) nuclear magnetic resonance signal seen from a well shimmed sample. In Fourier transform nuclear magnetic resonance spectroscopy, free induction decay (FID) is the observable nuclear magnetic resonance (NMR) signal generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field (conventionally along z).
Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...
Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.