Search results
Results from the WOW.Com Content Network
A Cartesian diver or Cartesian devil is a classic science experiment which demonstrates the principle of buoyancy (Archimedes' principle) and the ideal gas law.The first written description of this device is provided by Raffaello Magiotti, in his book Renitenza certissima dell'acqua alla compressione (Very firm resistance of water to compression) published in 1648.
Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's density is greater than the density of the fluid in which it is immersed) or rise (if it is less).
Buoyancy (/ ˈ b ɔɪ ən s i, ˈ b uː j ən s i /), [1] [2] or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid.
In On Floating Bodies, Archimedes suggested that (c. 246 BC): Any object, totally or partially immersed in a fluid or liquid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes' principle allows the buoyancy of any floating object partially or fully immersed in a fluid to be calculated.
Main Menu. News. News
The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2] The weight of the displaced fluid can be found mathematically. The mass of the displaced fluid can be expressed in terms of the density and its volume, m = ρV.
The purpose of On Floating Bodies I-II was to determine the positions that various solids will assume when floating in a fluid, according to their form and the variation in their specific gravities. The work is known for containing the first statement of what is now known as Archimedes' principle .
Flotation of flexible objects is a phenomenon in which the bending of a flexible material allows an object to displace a greater amount of fluid than if it were completely rigid.