Search results
Results from the WOW.Com Content Network
The intermediates in the thorium-232 decay chain are all relatively short-lived; the longest-lived intermediate decay products are radium-228 and thorium-228, with half lives of 5.75 years and 1.91 years, respectively. All other intermediate decay products have half lives of less than four days. [5]
A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0 × 10 8 and 4.83 × 10 11 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6 × 10 9 years ...
The 4n chain of thorium-232 is commonly called the "thorium series" or "thorium cascade". Beginning with naturally occurring thorium-232, this series includes the following elements: actinium, bismuth, lead, polonium, radium, radon and thallium. All are present, at least transiently, in any natural thorium-containing sample, whether metal ...
It was once named Radiothorium, due to its occurrence in the disintegration chain of thorium-232. It has a half-life of 1.9116 years. It undergoes alpha decay to 224 Ra. Occasionally it decays by the unusual route of cluster decay, emitting a nucleus of 20 O and producing stable 208 Pb. It is a daughter isotope of 232 U in the thorium decay series.
It is much rarer than 227 Ac and 228 Ac, which respectively occur in the decay chains of uranium-235 and thorium-232. Its abundance was estimated as less than 1.1 × 10 −19 relative to 232 Th and around 9.9 × 10 −16 relative to 230 Th in secular equilibrium. [2]
One last change I'd make is getting rid of the Subtotal MeV column. The total is mentioned in the text, and adding it up as we go seems oddly unuseful. I'd also combine the decay mode and probability in a single column - consistency again. The table is a lot wider than the others because of these. SkoreKeep 23:48, 29 June 2019 (UTC)
Uranium-232 (232 U) is an isotope of uranium.It has a half-life of around 69 years and is a side product in the thorium cycle.It has been cited as an obstacle to nuclear proliferation using 233 U as the fissile material, because the intense gamma radiation emitted by 208 Tl (a daughter of 232 U, produced relatively quickly) makes the 233 U contaminated with it more difficult to handle.
Three isotopes are found in nature, 225 Ac, 227 Ac and 228 Ac, as intermediate decay products of, respectively, 237 Np, 235 U, and 232 Th. 228 Ac and 225 Ac are extremely rare, so almost all natural actinium is 227 Ac.