Search results
Results from the WOW.Com Content Network
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
Covered topics include special functions, linear algebra, probability models, random numbers, interpolation, integral transforms and more. Free software under MIT/X11 license. Measurement Studio is a commercial integrated suite UI controls and class libraries for use in developing test and measurement applications.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
Codeless interface to external C, C++, and Fortran code. Mostly compatible with MATLAB. GAUSS: Aptech Systems 1984 21 8 December 2020: Not free Proprietary: GNU Data Language: Marc Schellens 2004 1.0.2 15 January 2023: Free GPL: Aimed as a drop-in replacement for IDL/PV-WAVE IBM SPSS Statistics: Norman H. Nie, Dale H. Bent, and C. Hadlai Hull ...
Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...
John Selfridge has conjectured that if p is an odd number, and p ≡ ±2 (mod 5), then p will be prime if both of the following hold: 2 p−1 ≡ 1 (mod p), f p+1 ≡ 0 (mod p), where f k is the k-th Fibonacci number. The first condition is the Fermat primality test using base 2.
jLab, a research platform for building an open-source MATLAB-like environment in pure Java and Groovy. Currently supports interpreted j-Scripts (MATLAB-like) and compiled GroovySci (extension to Groovy) scripts that provides direct interfacing to Java code and scripting access to many popular Java scientific libraries (e.g. Weka and JSci ) and ...