enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Propeller theory - Wikipedia

    en.wikipedia.org/wiki/Propeller_theory

    A propeller imparts momentum to a fluid which causes a force to act on the ship. [1] The ideal efficiency of any propulsor is that of an actuator disc in an ideal fluid. This is called the Froude efficiency and is a natural limit which cannot be exceeded by any device, no matter how good it is.

  3. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    Propulsive efficiency comparison for various gas turbine engine configurations. The calculation is somewhat different for reciprocating and turboprop engines which rely on a propeller for propulsion since their output is typically expressed in terms of power rather than thrust. The equation for heat added per unit time, Q, can be adopted as ...

  4. Contra-rotating marine propellers - Wikipedia

    en.wikipedia.org/wiki/Contra-rotating_marine...

    ABB provided an azimuth thruster for ShinNihonkai Ferries in form of the CRP Azipod, [2] claiming efficiency gains from the propeller (about 10% increase [3]) and a simpler hull design. Volvo Penta have launched the IPS (Inboard Performance System), [4] an integrated diesel, transmission and pulling contra-rotating propellers for motor yachts.

  5. Blade element momentum theory - Wikipedia

    en.wikipedia.org/wiki/Blade_Element_Momentum_Theory

    Whereas the streamtube area is reduced by a propeller, it is expanded by a wind turbine. For either application, a highly simplified but useful approximation is the Rankine–Froude "momentum" or "actuator disk" model (1865, [1] 1889 [2]). This article explains the application of the "Betz limit" to the efficiency of a ground-based wind turbine.

  6. Blade element theory - Wikipedia

    en.wikipedia.org/wiki/Blade_element_theory

    Consider the element at radius r, shown in Fig. 1, which has the infinitesimal length dr and the width b. The motion of the element in an aircraft propeller in flight is along a helical path determined by the forward velocity V of the aircraft and the tangential velocity 2πrn of the element in the plane of the propeller disc, where n represents the revolutions per unit time.

  7. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    where is propulsive efficiency (typically 0.65 for wooden propellers, 0.75 metal fixed pitch and up to 0.85 for constant-speed propellers), hp is the engine's shaft horsepower, and is true airspeed in feet per second, weight is in lbs. The metric formula is:

  8. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    The Euler pump and turbine equations are the most fundamental equations in the field of turbomachinery.These equations govern the power, efficiencies and other factors that contribute to the design of turbomachines.

  9. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    P R curve for the light aircraft with the drag curve above and weighing 2000 kg, with a wing area of 15 m² and a propeller efficiency of 0.8. W = (ρ/2).S.V 2.C L and P R = (ρ/2η).S.V 3.C D. The extra factor of V /η, with η the propeller efficiency, in the second equation enters because P R = (required thrust)× V /η. Power rather than ...