enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_groups

    The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...

  3. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    For an arbitrary family of groups indexed by , their direct sum [2] is the subgroup of the direct product that consists of the elements () that have finite support, where by definition, () is said to have finite support if is the identity element of for all but finitely many . [3] The direct sum of an infinite family () of non-trivial groups is ...

  4. Indecomposable module - Wikipedia

    en.wikipedia.org/wiki/Indecomposable_module

    Every finitely-generated R-module is a direct sum of these. Note that this is simple if and only if n = 1 (or p = 0); for example, the cyclic group of order 4, Z/4, is indecomposable but not simple – it has the subgroup 2Z/4 of order 2, but this does not have a complement. Over the integers Z, modules are abelian groups.

  5. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    Direct sums are commutative and associative (up to isomorphism), meaning that it doesn't matter in which order one forms the direct sum. The abelian group of R-linear homomorphisms from the direct sum to some left R-module L is naturally isomorphic to the direct product of the abelian groups of R-linear homomorphisms from M i to L: ⁡ (,) ⁡ (,).

  6. Direct sum of topological groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_topological...

    More generally, is called the direct sum of a finite set of subgroups, …, of the map = is a topological isomorphism. If a topological group G {\displaystyle G} is the topological direct sum of the family of subgroups H 1 , … , H n {\displaystyle H_{1},\ldots ,H_{n}} then in particular, as an abstract group (without topology) it is also the ...

  7. Free abelian group - Wikipedia

    en.wikipedia.org/wiki/Free_abelian_group

    As well as the direct sum, another way to combine free abelian groups is to use the tensor product of -modules. The tensor product of two free abelian groups is always free abelian, with a basis that is the Cartesian product of the bases for the two groups in the product. [22]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    Two isomorphic modules are identical for all practical purposes, differing solely in the notation for their elements. The kernel of a module homomorphism f : M → N is the submodule of M consisting of all elements that are sent to zero by f, and the image of f is the submodule of N consisting of values f(m) for all elements m of M. [4]