Search results
Results from the WOW.Com Content Network
Benzene can be easily converted to chlorobenzene by nucleophilic aromatic substitution via a benzyne intermediate. [1] It is treated with aqueous sodium hydroxide at 350 °C and 300 bar or molten sodium hydroxide at 350 °C to convert it to sodium phenoxide, which yields phenol upon acidification. [2]
The Raschig–Hooker process's ability to make phenol makes it comparable to other methods, such as the Dow and Bayer process, which also converts benzene into phenol. In fact, the ability to recycle the hydrogen chloride made the Raschig–Hooker process preferable to the Dow and Bayer process, which requires its sodium chloride product to be ...
The term stems from cumene (isopropyl benzene), the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), [1] and independently by Heinrich Hock in 1944. [2] [3] This process converts two relatively cheap starting materials, benzene and propylene, into two more valuable ones, phenol and acetone.
In commercial applications, the alkylating agents are generally alkenes, some of the largest scale reactions practiced in industry.Such alkylations are of major industrial importance, e.g. for the production of ethylbenzene, the precursor to polystyrene, from benzene and ethylene and for the production of cumene from benzene and propene in cumene process:
Dow process (phenol), a method of phenol production through the hydrolysis of chlorobenzene Topics referred to by the same term This disambiguation page lists articles associated with the title Dow process .
The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation. The reaction was discovered in 1884 by Swiss chemist Traugott Sandmeyer , when he attempted to synthesize phenylacetylene from benzenediazonium chloride and copper(I ...
The heavy reformate is high in octane and low in benzene, hence it is an excellent blending component for the gasoline pool. Benzene is often removed with a specific operation to reduce the content of benzene in the reformate as the finished gasoline has often an upper limit of benzene content (in the UE this is 1% volume).
The DETAL process involving dehydrogenation of n-paraffins to olefins, and subsequent reaction with benzene using a fixed bed catalyst. This is newer technology and has several of the stages depicted in the HF/n-paraffins process, but it is principally different in the benzene alkylation step, during which a solid-state catalyst is employed.