Search results
Results from the WOW.Com Content Network
Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. Some common examples of microscopy techniques include: Optical ...
The characterization of mechanical properties in polymers typically refers to a measure of the strength, elasticity, viscoelasticity, and anisotropy of a polymeric material. The mechanical properties of a polymer are strongly dependent upon the Van der Waals interactions of the polymer chains, and the ability of the chains to elongate and align ...
Characterization is the way materials scientists examine the structure of a material. This involves methods such as diffraction with X-rays, electrons or neutrons, and various forms of spectroscopy and chemical analysis such as Raman spectroscopy, energy-dispersive spectroscopy, chromatography, thermal analysis, electron microscope analysis, etc.
Materials Science and Engineering – An Introduction. London: John Wiley and Sons. ISBN 0-471-32013-7. Yao, N, ed. (2007). Focused Ion Beam Systems: Basics and Applications. Cambridge, UK: Cambridge University Press. ISBN 978-0-521-83199-4
Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials.It is most useful for studying the viscoelastic behavior of polymers.A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus.
Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials.It therefore has a strong overlap with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science and electronics with a focus on the synthesis of novel materials and their characterization.
The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles.,. [1] Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties.
Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. [2] An instrument dedicated to performing such powder measurements is called a powder diffractometer .