Search results
Results from the WOW.Com Content Network
A standard proof relies on transforming the differential equation into an integral equation, then applying the Banach fixed-point theorem to prove the existence of a solution, and then applying Grönwall's lemma to prove the uniqueness of the solution.
A uniqueness theorem (or its proof) is, at least within the mathematics of differential equations, often combined with an existence theorem (or its proof) to a combined existence and uniqueness theorem (e.g., existence and uniqueness of solution to first-order differential equations with boundary condition). [3]
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement
In mathematics, the Cauchy–Kovalevskaya theorem (also written as the Cauchy–Kowalevski theorem) is the main local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value problems. A special case was proven by Augustin Cauchy , and the full result by Sofya Kovalevskaya .
Despite that, the purely theoretical existence results are nevertheless ubiquitous in contemporary mathematics. For example, John Nash's original proof of the existence of a Nash equilibrium in 1951 was such an existence theorem. An approach which is constructive was also later found in 1962. [6]
Proof of the Great Picard Theorem Suppose f is an analytic function on the punctured disk of radius r around the point w , and that f omits two values z 0 and z 1 . By considering ( f ( p + rz ) − z 0 )/( z 1 − z 0 ) we may assume without loss of generality that z 0 = 0, z 1 = 1, w = 0, and r = 1.
As an important result, the inverse function theorem has been given numerous proofs. The proof most commonly seen in textbooks relies on the contraction mapping principle, also known as the Banach fixed-point theorem (which can also be used as the key step in the proof of existence and uniqueness of solutions to ordinary differential equations ...
In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems.