enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    Note that unlike the Euler–Bernoulli theory, the angular deflection is another variable and not approximated by the slope of the deflection. Also, is the density of the beam material (but not the linear density). is the cross section area. is the elastic modulus.

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory can also be extended to the analysis of curved beams, beam buckling, composite beams, and geometrically nonlinear beam deflection. Euler–Bernoulli beam theory does not account for the effects of transverse shear strain. As a result, it underpredicts deflections and overpredicts natural frequencies.

  4. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    The proportions of the beam are such that it would fail by bending rather than by crushing, wrinkling or sideways buckling. Cross-sections of the beam remain plane during bending. Deflection of a beam deflected symmetrically and principle of superposition. Compressive and tensile forces develop in the direction of the beam axis under bending loads.

  5. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    In this case, the equation governing the beam's deflection can be approximated as: = () where the second derivative of its deflected shape with respect to (being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal ...

  6. Influence line - Wikipedia

    en.wikipedia.org/wiki/Influence_line

    Figure 1: (a) This simple supported beam is shown with a unit load placed a distance x from the left end. Its influence lines for four different functions: (b) the reaction at the left support (denoted A), (c) the reaction at the right support (denoted C), (d) one for shear at a point B along the beam, and (e) one for moment also at point B. Figure 2: The change in Bending Moment in a ...

  7. Sandwich theory - Wikipedia

    en.wikipedia.org/wiki/Sandwich_theory

    Bending of a sandwich beam. The total deflection is the sum of a bending part w b and a shear part w s Shear strains during the bending of a sandwich beam. Let the sandwich beam be subjected to a bending moment and a shear force . Let the total deflection of the beam due to these loads be .

  8. Generalised beam theory - Wikipedia

    en.wikipedia.org/wiki/Generalised_beam_theory

    In structural engineering and mechanical engineering, generalised beam theory (GBT) is a one-dimensional theory used to mathematically model how beams bend and twist under various loads. It is a generalization of classical Euler–Bernoulli beam theory that approximates a beam as an assembly of thin-walled plates that are constrained to deform ...

  9. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]