Search results
Results from the WOW.Com Content Network
To concentrate the magnetic field in an electromagnet, the wire is wound into a coil with many turns of wire lying side-by-side. [2] The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. [2] A coil forming the shape of a straight tube (a helix) is called a solenoid. [1] [2]
Investigation into electromagnetic phenomena began about 5,000 years ago. There is evidence that the ancient Chinese, [1] Mayan, [2] [3] and potentially even Egyptian civilizations knew that the naturally magnetic mineral magnetite had attractive properties, and many incorporated it into their art and architecture. [4]
For undergraduates, there are several widely used textbooks, including David Griffiths' Introduction to Electrodynamics and Electricity and Magnetism by Edward Purcell and David Morin. [5] Also at an undergraduate level, Richard Feynman 's classic Lectures on Physics is available online to read for free.
Electromagnets often use a wire curled up into solenoid around an iron core which strengthens the magnetic field produced because the iron core becomes magnetised. [ 15 ] [ 16 ] Maxwell's extension to the law states that a time-varying electric field can also generate a magnetic field. [ 12 ]
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
A magnet keeper is a specialised pole piece used to temporarily connect the poles of a permanent magnet, to help to preserve the magnetism, and for safety in the case of large and powerful magnets. Another specialised pole piece is the armature of an electromechanical solenoid , which produces work by being attracted by an electromagnet when ...
In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.
When the electromagnet is energized, a current passing through the electromagnet creates a magnetic flux that causes the armature plate to attract to the electromagnet, creating a locking action. Because the mating area of the electromagnet and armature is relatively large, the force created by the magnetic flux is strong enough to keep the ...