enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

  3. Graph homology - Wikipedia

    en.wikipedia.org/wiki/Graph_homology

    In algebraic topology and graph theory, graph homology describes the homology groups of a graph, where the graph is considered as a topological space. It formalizes the idea of the number of "holes" in the graph. It is a special case of a simplicial homology, as a graph is a special case of a simplicial complex. Since a finite graph is a 1 ...

  4. Mathematical visualization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_visualization

    The Mandelbrot set, one of the most famous examples of mathematical visualization. Mathematical phenomena can be understood and explored via visualization. Classically, this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century).

  5. Toroidal graph - Wikipedia

    en.wikipedia.org/wiki/Toroidal_graph

    A toroidal graph that cannot be embedded in a plane is said to have genus 1. The Heawood graph, the complete graph K 7 (and hence K 5 and K 6), the Petersen graph (and hence the complete bipartite graph K 3,3, since the Petersen graph contains a subdivision of it), one of the Blanuša snarks, [1] and all Möbius ladders are toroidal.

  6. Topological graph theory - Wikipedia

    en.wikipedia.org/wiki/Topological_graph_theory

    In mathematics, topological graph theory is a branch of graph theory. It studies the embedding of graphs in surfaces, spatial embeddings of graphs, and graphs as topological spaces. [1] It also studies immersions of graphs. Embedding a graph in a surface means that we want to draw the graph on a surface, a sphere for example, without two edges ...

  7. Induced path - Wikipedia

    en.wikipedia.org/wiki/Induced_path

    The even-hole-free graphs are the graphs containing no induced cycles with an even number of vertices. The trivially perfect graphs are the graphs that have neither an induced path of length three nor an induced cycle of length four. By the strong perfect graph theorem, the perfect graphs are the graphs with no odd hole and no odd antihole.

  8. Strange Holes in Georgia's Clouds: The Science Behind ...

    www.aol.com/strange-holes-georgias-clouds...

    Sightings of hole-punch clouds inundated the Facebook page for the National Weather Service in Peachtree City, Georgia, on Monday with more than a dozen photos sent in from across northern Georgia.

  9. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object. The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional simplicial complexes: b 0 is the number of connected components; b 1 is the number of one-dimensional or "circular" holes;