Search results
Results from the WOW.Com Content Network
In mathematical logic, the de Bruijn index is a tool invented by the Dutch mathematician Nicolaas Govert de Bruijn for representing terms of lambda calculus without naming the bound variables. [1] Terms written using these indices are invariant with respect to α-conversion , so the check for α-equivalence is the same as that for syntactic ...
The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:
An example EXIT chart showing two components "right" and "left" and an example decoding (blue) An extrinsic information transfer chart, commonly called an EXIT chart, is a technique to aid the construction of good iteratively-decoded error-correcting codes (in particular low-density parity-check (LDPC) codes and Turbo codes).
Next the three eigenvalues of + are calculated so that for each point in the velocity field there are three corresponding eigenvalues; , and . The eigenvalues are ordered in such a way that λ 1 ≥ λ 2 ≥ λ 3 {\displaystyle \lambda _{1}\geq \lambda _{2}\geq \lambda _{3}} .
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic.It was introduced by Moses Schönfinkel [1] and Haskell Curry, [2] and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages.
The latter is guaranteed by the strong confluence property of reduction in this model of computation. Thus interaction nets provide a natural language for massive parallelism. Interaction nets are at the heart of many implementations of the lambda calculus, such as efficient closed reduction [2] and optimal, in Lévy's sense, Lambdascope. [3]
In programming language theory, lazy evaluation, or call-by-need, [1] is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which avoids repeated evaluations (by the use of sharing). [2] [3] The benefits of lazy evaluation include:
In functional programming, continuation-passing style (CPS) is a style of programming in which control is passed explicitly in the form of a continuation.This is contrasted with direct style, which is the usual style of programming.