Search results
Results from the WOW.Com Content Network
The shear stress that works on the bottom (with a normal uniform flow along a slope) is: =, where: is the shear tension exerted by the flow on the bed; is the water depth; is the gradient (= the slope of the current).
The Shields parameter, also called the Shields criterion or Shields number, is a nondimensional number used to calculate the initiation of motion of sediment in a fluid flow. It is a dimensionalization of a shear stress , and is typically denoted ψ {\displaystyle \psi } or θ {\displaystyle \theta } .
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
(0) real beam, (1) shear and moment, (2) conjugate beam, (3) slope and displacement The conjugate-beam methods is an engineering method to derive the slope and displacement of a beam. A conjugate beam is defined as an imaginary beam with the same dimensions (length) as that of the original beam but load at any point on the conjugate beam is ...
where is the shear strength, is the normal stress, is the intercept of the failure envelope with the axis, and is the slope of the failure envelope. The quantity c {\displaystyle c} is often called the cohesion and the angle ϕ {\displaystyle \phi } is called the angle of internal friction .
The use of the depth–slope product — in computing the bed shear-stress — specifically refers to two assumptions that are widely applicable to natural river channels: that the angle of the channel from horizontal is small enough that it can be approximated as the slope by the small-angle formula, and that the channel is much wider than it is deep, and sidewall effects can be ignored.
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),