enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    Originally, a product was and is still the result of the multiplication of two or more numbers.For example, 15 is the product of 3 and 5.The fundamental theorem of arithmetic states that every composite number is a product of prime numbers, that is unique up to the order of the factors.

  3. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Such a product is the subject of dimensional analysis. The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4. Indeed, multiplication by 3, followed by division by 3, yields the original number. The division of a number other than 0 by itself equals 1.

  4. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    The complex conjugate is found by reflecting across the real axis. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or .

  5. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way.

  6. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that is an integer. When a and b are both integers, and b is a multiple of ...

  7. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid 's Elements. If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers. — Euclid, Elements Book VII, Proposition 30.

  8. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In the base ten (decimal) number system, integer powers of 10 are written as the digit 1 followed or preceded by a number of zeroes determined by the sign and magnitude of the exponent. For example, 103 = 1000 and 10−4 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers.

  9. Rule of product - Wikipedia

    en.wikipedia.org/wiki/Rule_of_product

    Rule of product. The elements of the set {A, B} can combine with the elements of the set {1, 2, 3} in six different ways. In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the intuitive idea that if there are a ways of doing ...