Search results
Results from the WOW.Com Content Network
A metric graph embedded in the plane with three open edges. The dashed line denotes the metric distance between two points and .. A metric graph is a graph consisting of a set of vertices and a set of edges where each edge = (,) has been associated with an interval [,] so that is the coordinate on the interval, the vertex corresponds to = and to = or vice versa.
Quantum mechanics provides two fundamental examples of the duality between position and momentum, the Heisenberg uncertainty principle ΔxΔp ≥ ħ/2 stating that position and momentum cannot be simultaneously known to arbitrary precision, and the de Broglie relation p = ħk which states the momentum and wavevector of a free particle are ...
In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle.. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions), its eigenvalues are the possible position vectors of the particle.
In light-front coordinates, + = +, =, the spatial coordinates ,, do not enter symmetrically: the coordinate is distinguished, whereas and do not appear at all. This non-covariant definition destroys the spatial symmetry that, in its turn, results in a few difficulties related to the fact that some transformation of the reference frame may ...
Abraham, R.; Marsden, J. E. (2008). Foundations of Mechanics: A Mathematical Exposition of Classical Mechanics with an Introduction to the Qualitative Theory of Dynamical Systems (2nd ed.).
In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory.It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest.
The momentum operator can be described as a symmetric (i.e. Hermitian), unbounded operator acting on a dense subspace of the quantum state space. If the operator acts on a (normalizable) quantum state then the operator is self-adjoint. In physics the term Hermitian often refers to both symmetric and self-adjoint operators. [7] [8]
The phase-space formulation is a formulation of quantum mechanics that places the position and momentum variables on equal footing in phase space.The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.