Search results
Results from the WOW.Com Content Network
A water wheel is a machine for converting the kinetic energy of flowing or falling water into useful forms of power, often in a watermill. A water wheel consists of a large wheel (usually constructed from wood or metal), with numerous blades or buckets attached to the outer rim forming the drive mechanism. Water wheels were still in commercial ...
State-of-the-art AWG for home use. An atmospheric water generator (AWG), is a device that extracts water from humid ambient air, producing potable water. Water vapor in the air can be extracted either by condensation - cooling the air below its dew point, exposing the air to desiccants, using membranes that only pass water vapor, collecting fog, [1] or pressurizing the air.
The main difference between early water turbines and water wheels is a swirl component of the water which passes energy to a spinning rotor. This additional component of motion allowed the turbine to be smaller than a water wheel of the same power. They could process more water by spinning faster and could harness much greater heads.
A pico hydro system made by the Sustainable Vision project from Baylor University [1]. Pico hydro is a term used for hydroelectric power generation of under 5 kW. These generators have proven to be useful in small, remote communities that require only a small amount of electricity – for example, to power one or two fluorescent light bulbs and a TV or radio in 50 or so homes. [2]
Water wheel: Water wheels can be used at low heads (1–5 metres) and medium flows (0.3–1.5 m 3 /s) and are considered safe for aquatic life. Gravitation water vortex power plant : This type of hydro power plant use the power of a gravitation water vortex, which only exists at low head.
The water wall turbine is a water turbine designed to utilize hydrostatic pressure differences for low head hydropower generation. It supports bidirectional inflow operation using radial blades that rotate around a horizontal axis. The water wall turbine is suitable for energy extraction from tidal and freshwater currents.
Francis type units cover a head range from 40 to 600 m (130 to 2,000 ft), and their connected generator output power varies from just a few kilowatts up to 1000 MW. Large Francis turbines are individually designed for each site to operate with the given water flow and water head at the highest possible efficiency, typically over 90% (to 99% [6]).
The water jet is directed towards the cylindrical runner by nozzle. The water enters the runner at an angle of about 45/120 degrees, transmitting some of the water's kinetic energy to the active cylindrical blades. Ossberger turbine runner. The regulating device controls the flow based on the power needed, and the available water. The ratio is ...