enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    This polynomial is called the characteristic polynomial of A. Equation is called the characteristic equation or the secular equation of A. The fundamental theorem of algebra implies that the characteristic polynomial of an n-by-n matrix A, being a polynomial of degree n, can be factored into the product of n linear terms,

  4. Faddeev–LeVerrier algorithm - Wikipedia

    en.wikipedia.org/wiki/Faddeev–LeVerrier_algorithm

    Urbain Le Verrier (1811–1877) The discoverer of Neptune.. In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial = of a square matrix, A, named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier.

  5. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    We call p(λ) the characteristic polynomial, and the equation, called the characteristic equation, is an N th-order polynomial equation in the unknown λ. This equation will have N λ distinct solutions, where 1 ≤ N λ ≤ N. The set of solutions, that is, the eigenvalues, is called the spectrum of A. [1] [2] [3]

  7. Closed-loop pole - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_pole

    The closed-loop poles, or eigenvalues, are obtained by solving the characteristic equation + =. In general, the solution will be n complex numbers where n is the order of the characteristic polynomial. The preceding is valid for single-input-single-output systems (SISO).

  8. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinants are used for defining the characteristic polynomial of a square matrix, whose roots are the eigenvalues. In geometry , the signed n -dimensional volume of a n -dimensional parallelepiped is expressed by a determinant, and the determinant of a linear endomorphism determines how the orientation and the n -dimensional volume are ...

  9. Cayley–Hamilton theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Hamilton_theorem

    Given an analytic function = = and the characteristic polynomial p(x) of degree n of an n × n matrix A, the function can be expressed using long division as = () + (), where q(x) is some quotient polynomial and r(x) is a remainder polynomial such that 0 ≤ deg r(x) < n.