enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    This tour corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian. Line graphs may have other Hamiltonian cycles that do not correspond to Euler tours, and in particular the line graph L(G) of every Hamiltonian graph G is itself Hamiltonian, regardless of whether the graph G is ...

  3. Harris graph - Wikipedia

    en.wikipedia.org/wiki/Harris_graph

    In graph theory, a Harris graph is defined as an Eulerian, tough, non-Hamiltonian graph. [1] [2] Harris graphs were introduced in 2013 when, at the University of Michigan, Harris Spungen conjectured that any graph which is both tough and Eulerian is sufficiently Hamiltonian.

  4. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]

  5. De Bruijn graph - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_graph

    Each n-dimensional De Bruijn graph is the line digraph of the (n – 1)-dimensional De Bruijn graph with the same set of symbols. [4] Each De Bruijn graph is Eulerian and Hamiltonian. The Euler cycles and Hamiltonian cycles of these graphs (equivalent to each other via the line graph construction) are De Bruijn sequences.

  6. Wheel graph - Wikipedia

    en.wikipedia.org/wiki/Wheel_graph

    The 7 cycles of the wheel graph W 4. For odd values of n, W n is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color. For even n, W n has chromatic number 4, and (when n ≥ 6) is not perfect. W 7 is the only wheel graph that is a unit distance graph in the ...

  7. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    A spanning subgraph of a given graph G has the same set of vertices as G itself but, possibly, fewer edges. A graph G, or one of its subgraphs, is said to be Eulerian if each of its vertices has even degree (its number of incident edges). Every simple cycle in a graph is an Eulerian subgraph, but there may be others.

  8. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    A graph that can be proven non-Hamiltonian using Grinberg's theorem. In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian.

  9. Tournament (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tournament_(graph_theory)

    The Hamiltonian paths are in one-to-one correspondence with the minimal feedback arc sets of the tournament. [5] Rédei's theorem is the special case for complete graphs of the Gallai–Hasse–Roy–Vitaver theorem, relating the lengths of paths in orientations of graphs to the chromatic number of these graphs. [6]