enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    A connected graph has an Euler cycle if and only if every vertex has even degree. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    This tour corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian. Line graphs may have other Hamiltonian cycles that do not correspond to Euler tours, and in particular the line graph L(G) of every Hamiltonian graph G is itself Hamiltonian, regardless of whether the graph G is ...

  4. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Euler's argument shows that a necessary condition for the walk of the desired form is that the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now called an Eulerian path or Euler walk in his honor ...

  5. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a ...

  6. Cycle space - Wikipedia

    en.wikipedia.org/wiki/Cycle_space

    The cycle space, also, has an algebraic structure, but a more restrictive one. The union or intersection of two Eulerian subgraphs may fail to be Eulerian. However, the symmetric difference of two Eulerian subgraphs (the graph consisting of the edges that belong to exactly one of the two given graphs) is again Eulerian. [1]

  7. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v). The BEST theorem states that the number ec(G) of Eulerian circuits in a connected Eulerian graph G is given by the formula

  8. Harris graph - Wikipedia

    en.wikipedia.org/wiki/Harris_graph

    In graph theory, a Harris graph is defined as an Eulerian, tough, non-Hamiltonian graph. [1] [2] Harris graphs were introduced in 2013 when, at the University of Michigan, Harris Spungen conjectured that a tough, Eulerian graph would be sufficient to be Hamiltonian. [3]

  9. Tait's conjecture - Wikipedia

    en.wikipedia.org/wiki/Tait's_conjecture

    The conjecture was significant, because if true, it would have implied the four color theorem: as Tait described, the four-color problem is equivalent to the problem of finding 3-edge-colorings of bridgeless cubic planar graphs. In a Hamiltonian cubic planar graph, such an edge coloring is easy to find: use two colors alternately on the cycle ...